Growth of wafer-scale MoS2 monolayer by magnetron sputtering.

نویسندگان

  • Junguang Tao
  • Jianwei Chai
  • Xin Lu
  • Lai Mun Wong
  • Ten It Wong
  • Jisheng Pan
  • Qihua Xiong
  • Dongzhi Chi
  • Shijie Wang
چکیده

The two-dimensional layer of molybdenum disulfide (MoS2) exhibits promising prospects in the applications of optoelectronics and valleytronics. Herein, we report a successful new process for synthesizing wafer-scale MoS2 atomic layers on diverse substrates via magnetron sputtering. Spectroscopic and microscopic results reveal that these synthesized MoS2 layers are highly homogeneous and crystallized; moreover, uniform monolayers at wafer scale can be achieved. Raman and photoluminescence spectroscopy indicate comparable optical qualities of these as-grown MoS2 with other methods. The transistors composed of the MoS2 film exhibit p-type performance with an on/off current ratio of ∼10(3) and hole mobility of up to ∼12.2 cm(2) V(-1) s(-1). The strategy reported herein paves new ways towards the large scale growth of various two-dimensional semiconductors with the feasibility of controllable doping to realize desired p- or n-type devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tribological properties of Cu-Ni3Al-MoS2 composite coating deposited by magnetron sputtering

In industrial applications, most materials are exposed to wear and friction because multiple conditions are used. However, the tribological properties of these materials can be improved with different techniques. One such technique that improves the frictional property of a surface is the use of self-lubricating coatings. In this study, multicomponent coatings of nominal composition Cu-Ni3Al-Mo...

متن کامل

Effect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering

Copper thin films with nano-scale structure have numerous applications in modern technology.  In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...

متن کامل

بررسی خواص پوشش MoS2-Cr ایجاد شده توسط فرایند پراکنش مگنترونی DC

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this study, MoS2-Cr composite coatings were deposited onto AISI 1045 steel substrates by direct-current magnetron sputtering. The MoS2/Cr ratio in the coatings was controlled by sputtering the composite targets. The coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy di...

متن کامل

Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations.

Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and ...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2015